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Abstract. Although Workflow Management Systems (WfMSs) are a
key component in workflow technology, research work for assessing and
comparing their performance is limited. This work proposes the first micro-
benchmark for WfMSs that can execute BPMN 2.0 workflows. To this end,
we focus on studying the performance impact of well-known workflow
patterns expressed in BPMN 2.0 with respect to three open source
WfMSs. We executed all the experiments under a reliable environment
and produced a set of meaningful metrics. This paper contributes to the
area of workflow technology by defining building blocks for more complex
BPMN 2.0 WfMS benchmarks. The results have shown bottlenecks on
architectural design decisions, resource utilization, and limits on the load
a WfMS can sustain, especially for the cases of complex and parallel
structures. Experiments on a mix of workflow patterns indicated that
there are no unexpected performance side e↵ects when executing di↵erent
workflow patterns concurrently, although the duration of the individual
workflows that comprised the mix was increased.

Keywords: Benchmarking · Micro-benchmark · BPMN 2.0 · Workflow
Patterns · Workflow Management Systems

1 Introduction

Despite the current trend of utilizing BPMN 2.0 as a common modeling and
execution language for business processes [17], there are no means to measure and
compare the performance of Workflow Management Systems (WfMSs). However,
the need for a benchmark is regularly a�rmed by the literature [21]. Before
proceeding with the development of a standard complex benchmark one needs
to understand the individual characteristics of the workload components. As a
first approximation, the workload of a WfMS benchmark mainly consists of the
workflow models to be executed and the frequency of their execution. However,
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we are currently lacking any information regarding the impact of individual
BPMN 2.0 constructs on the performance of a WfMS. Micro-benchmarks aim to
stress fundamental concepts of a system such as single operations or target narrow
aspects of more complex systems. Therefore, we consider a micro-benchmark the
appropriate tool for our goal as it targets the specific performance evaluation of
atomic operations [20]. Workflow patterns can be seen as generic, recurring con-
cepts and constructs that should be implemented by any workflow language [19].
In our context and given the complexity of the BPMN 2.0 language, we focus on
the basic control-flow workflow patterns that apply on the core of the BPMN 2.0
language. Targeting to the simple workflow patterns we follow the assumption
that these are the simplest and more frequent atomic operations that a WfMS
would use. The main contribution of this paper is thus the first micro-benchmark
for BPMN 2.0 WfMSs based on the following workflow patterns: sequence flow,
exclusive choice and simple merge, explicit termination, parallel split and syn-
chronization, as well as arbitrary cycle. Similar e↵orts for di↵erent systems [12,1]
or languages (e.g., WS-BPEL [2]) have revealed fundamental bottlenecks in the
corresponding engines, and have therefore been proven beneficiary to improve
the tested systems. The main goal of this work is to enable further research
in the performance engineering of the BPMN 2.0 WfMSs, by examining three
state-of-the-art open-source WfMSs and providing the first insight on which
BPMN 2.0 language factors impact the WfMSs performance.

This work focuses on studying the performance of the Process Navigator, a
core WfMS component responsible for driving the execution of the tasks of each
workflow instance with respect to the semantics of BPMN 2.0. More particularly,
the research questions that our work aims to answer are: i) what is the impact
of individual or a mix of workflow patterns on the performance of each one of
the benchmarked BPMN 2.0 WfMSs? ii) are there performance bottlenecks in
the selected WfMSs? We consider it important to understand the performance
behaviour of the WfMS fundamental components before proceeding to more
complex performance measurements that will also include external interactions.
To do so, BPMN 2.0 workflows that implement the selected workflow patterns
are given as input to two sets of experiments. The first set of experiments aims
to execute a large load of workflow instances for each workflow pattern and
investigate the behavior of the WfMSs. The second set of experiments studies
the behavior of the WfMSs when they execute a uniformly distributed mix of all
workflow patterns. For all the experiments we have calculated the throughput, the
process execution time, and resource utilization from raw measurements, obtained
using a reliable benchmarking environment presented in previous work [6]. The
results revealed bottlenecks on architectural design decisions, wasteful resource
utilization, and load limits for specific workflow patterns.

To summarize, the original, scientific contributions of this work are: i) pro-
viding the first micro-benchmark for BPMN 2.0 WfMS; ii) analyzing the e↵ect
of selected core BPMN 2.0 language constructs on the WfMS performance;
iii) defining meaningful candidate constructs for BPMN 2.0 complex benchmarks;
iv) running experiments on a reliable environment; v) conducting a thorough anal-



ysis on the results of the performance evaluation of the selected WfMSs to reveal
performance bottlenecks. The remainder of this paper is structured as follows:
Sec. 2 presents the workload mix of the experiments and Sec. 3 explains the setup
of the benchmark environment and of the experiments. The analysis of the results
as well as possible threats to validity are discussed in Sec. 4. Sec. 5 overviews the re-
lated work and Sec. 6 concludes and presents our plans for future work. Moreover,
supplementary material of the raw data and aggregated metrics can be found at:
http://benchflow.inf.usi.ch/results/2015/caise-microbenchmark.tgz

2 Experiments Workload Mix

The workflows making up the workload of the micro-benchmark are designed to
comply with these constraints: i) Maximize the simplicity of the model expressing
the workflow pattern; ii) Omit the interactions with external systems. All tasks
are implemented as script tasks, while human tasks and Web service invocations
are excluded. This way we stress mainly the Process Navigator, since script tasks
are fully automated and only use embedded application logic that is co-located
with the engine. iii) Most script tasks are empty. Only the ones required to
implement the workflow pattern semantics contain the minimal amount of code
and produce the minimum amount of data to do so. iv) Define equal probability
of passing the control flow to any outgoing branch of the gateways. v) As it
is recommended by the BPMN 2.0 Standard [9, p. 90], the exclusive choice is
combined with the simple merge ([EXC]) workflow pattern and the parallel split
is combined with the synchronization ([PAR]) workflow pattern.

In the scope of this work, we focus on the basic control flow and structural
workflow patterns that can be expressed by BPMN 2.0 [22]. We have excluded the
deferred choice, multiple instances without synchronization, and synchronization
merge because the BPMN 2.0 elements that are used to implement them are
not widely used in practice [15]. The workflows designed for our experiments are
shown in Fig. 1. In the rest of this section we present the workflow models that
comprise the workload mix of the micro-benchmark and define our hypotheses
concerning their expected performance.

Sequence Flow [SEQ] - This workflow consists of two sequential empty
script tasks. Since this is the simplest structure a workflow model may have,
we expect that the execution times should be similar and stable on all three
WfMSs [HYP1]. Exclusive Choice and Simple Merge [EXC] - The first
script task randomly generates with uniform probability the numbers 1 or 2,
according to which the upper or the lower branch is chosen. In both cases an empty
script task is executed. The evaluation of the condition of the exclusive choice
is expected to have an impact on the performance [HYP2]. Parallel Split and

Synchronization [PAR] - This workflow executes in parallel two empty script
tasks. As parallelism generally demands more CPU power we expect this to reflect
on the performance measurements [HYP3]. Explicit Termination Pattern

[EXT] - This workflow executes two branches concurrently and according to
the BPMN 2.0 language semantics when one of these branches ends it will also

http://benchflow.inf.usi.ch/results/2015/caise-microbenchmark.tgz
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Fig. 1. Defined Patterns for the Workload Mix

terminate the rest of the executing branches and the overall workflow instance
will be completed successfully. The “Empty Script 1” is an empty script task,
while the “Wait 5 Sec” task waits for five seconds. The value of five seconds
was chosen to guarantee that the lower branch will be slower than the upper
one. As the “Empty Script 1” is the fastest, we expect that the workflow will be
completed with the completion of the path containing the “Empty Script 1”, and
then the terminate event will interrupt the “Wait 5 Sec” task. The workflows in
[PAR] and [EXT] have very similar structure, although they represent di↵erent
workflow patterns. We expect that the concurrent execution of tasks should
demonstrate similar performance behavior [HYP4]. Arbitrary Cycle [CYC] -
Cycles are not expressed through any specific BPMN 2.0 construct but through
a combination of exclusive gateways that form a cyclic structure that has at least
two entries or two exits. The [CYC] is implemented with two entry points at the
second and third exclusive gateways and starts by a script task that randomly
generates the integer number x = 1 or x = 2 and initializes a variable i = 0. With
respect to the value of the x variable the upper or the lower branches are followed
(cf. [EXC]). The lower branch executes the “Empty Script 2”. The upper branch
executes an “Empty Script 1” and then increases the variable i. This path will be
followed until the variable i == 10. To have a di↵erent but deterministic behavior
of the branches we have implemented the “Empty Script 2” to assign i = 5. In
this case the cycle will be repeated fewer times, until the variable i == 10. In
terms of size [CYC] represents a slightly more complex structure than the other
structures defined under the scope of this work. This might contribute towards
revealing performance bottlenecks due to the usage of nested exclusive gateways,
or sequential decision points [HYP5].

3 Experiments Setup

3.1 WfMS Configuration

The complex architecture of the WfMS introduces a set of challenges to be
addressed by the design of the benchmark: i) controlling the initial condition of



the experiments is di�cult due to the distributed nature of the WfMS; ii) variable
combinations of configuration parameters may have a significant impact on the
performance; iii) a standard API to interact with the WfMSs and to access the
execution data is not available; and iv) the asynchronous execution of processes
introduces additional challenges for handling the performance data collection.In
previous work we have therefore introduced the BenchFlow framework [6], that
addresses the above challenges and provides a complete solution for benchmarking
WfMS. Moreover, BenchFlow is compliant with the main requirements of a
benchmark: portability, scalability, simplicity, vendor neutrality, repeatability,
and e�ciency [10].

To automate the configuration and deployment of the WfMS before the
execution of benchmark, BenchFlow [7] uses the lightweight containerization
technology Docker [13]. The execution of the benchmark is driven by Faban [4],
a framework for performance workload creation and execution, used in industry
benchmarks such as SPECjEnterprise2010 and SPECjms [18]. The load drivers
provide the infrastructure needed to issue the load to the WfMS. To the rest of
this paper the load drivers are also referred to as instance producers, as they
are sending the requests for the workflow instance initiation. In order to ensure
the reproducibility of the benchmark results one needs to explicitly describe the
benchmark environment and configurations. Thus, in the following we provide
this information.

The BenchFlow framework is used in this work for benchmarking three open-
source WfMSs: WfMS A, WfMS B and Camunda 7.3.0 [3]4. These WfMSs are
widely used in industry and have a large user community according to the vendors’
websites. The selected engines are also already tested against conformance to
the BPMN 2.0 standard [8]. This makes them a suitable starting point for our
defined workload and ensures the possibility to execute more diverse, complex
workload in future versions of the benchmark. Moreover, WfMS B and Camunda
are provided in Docker containers with vendor-suggested configurations, a fact
that improves the reproducibility of our benchmark.

We benchmark these WfMSs on top of Ubuntu 14.04.01, using Oracle Java
Server 7u79. WfMS A and Camunda were deployed on top of Apache Tomcat
7.0.62, while WfMS B was deployed on top of Wildfly 8.1.0.Final. All these WfMS
utilise a MySQL Community Server 5.6.26 as Database Management System
(DBMS), installed in a Docker container5. For WfMS B and Camunda6 we have
used the o�cial Docker images, and we have followed the vendor-suggested
configurations. We configured WfMS A as suggested from the vendor’s website,
and we deployed it using the most popular Docker image. We have updated the
dependencies on the operating system and Java to be identical to the other two
WfMS, to reduce possible discrepancies introduced by using di↵erent versions.

4 At the time of publication some of the vendors we contacted did not explicitly agree
to be named when presenting the results of the benchmark

5
https://hub.docker.com/_/mysql/

6
https://hub.docker.com/r/camunda/camunda-bpm-platform/

https://hub.docker.com/_/mysql/
https://hub.docker.com/r/camunda/camunda-bpm-platform/


Every WfMS was given a maximum Java heap size of 32 GB, and the
connection to the DBMS uses the MySQL Connector/J 5.1.33 with 10 as value
for initial thread pool size, 100 as maximum number of connections, and 10
minimum idle connections. For WfMS A, we enabled the “Async executor” as
suggested on the vendor’s website. The other configurations are as provided
in the mentioned Docker images. In particular, all the WfMSs log a complete
history of the workflows execution to the database (i.e., details on the execution
of the workflow instances as well as all the initial business process models). The
containers are run by using the host network option of Docker. This option
enables the containers to directly rely on the network interfaces of the physical
machine hosting the Docker Engine, and has been proven not to add performance
overhead in the network communications [5].

The benchmark environment is distributed on three servers: one for Faban
that executes the instance producers, one for the WfMS, and one for the database
of the WfMS that maintains the execution information of the workflows. All
the servers use Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-33-generic x86 64) as
operating system and the Docker Engine version 1.8.2. The WfMS is deployed
on a 12 CPU Cores at 800Mhz, 64GB of RAM. In this way we ensure that the
machine where we deploy the instance producer (64 CPU Cores at 1400MHz,
128GB of RAM) can issue su�cient load to the WfMS and the database (64 CPU
Cores at 2300MHz, 128GB of RAM) and handle the requests from the WfMS.
For the interaction of the WfMS with the DBMS and of the Instance Producers
(IP), with the WfMS we use two di↵erent dedicated networks of 10Gbit/s. Since
the BenchFlow environment guaranties a repeatable benchmark, any test that
follows the suggested configuration should reproduce the same results.

3.2 Experiments Methodology

We define two scenarios for the micro-benchmark. Scenario 1 issues a large load to
the WfMSs and investigates their behavior for individual patterns ([SEQ], [EXC],
[EXT], [PAR], [CYC]). In some cases a WfMS does not sustain the predefined
load. Then we re-execute the experiments with a lower load and observe the
WfMS behavior for this execution. Scenario 2 studies the performance behavior
when di↵erent workflow patterns run concurrently ([MIX]). More particularly, we
test if the performance of a workflow pattern is a↵ected when it runs concurrently
with other types of workflow patterns. For this purpose, we benchmark a mix of
all the workflow patterns distributed uniformly (i.e., 20% of instances for each
workflow pattern). The load of this experiment corresponds to the large load
defined in Scenario 1. Both scenarios are executed three times for each WfMS
to verify that the behavior is similar among the runs. The maximum standard
deviation allowed among the repetitions was set to 5%, but it was approximately
3.5% on average.

For each benchmark run we collect the raw execution data for each workflow
instance execution, and with these we calculate meaningful statistical data on
the workflow instance duration (WIDuration), which is defined as the time
di↵erence between the start and the completion of a workflow instance; the



resource utilization, in terms of CPU utilization and Memory utilization; the
absolute number of the executed workflow instances by the WfMS per benchmark
run (#WorkflowInstances(wi)); and the number of executed workflow instances

per time unit (Throughput = #WorkflowInstances(wi)
Time(sec) ) [11].

The load function (T
l

) we use consists of an experiment duration time of 10
minutes (cf., Experiment Duration of Table 1) with 30 seconds of ramp-up period
(T

r

). During the experiment the instance producers (u) perform up to 1 request
per second (req/sec) when the response time of the WfMS is low, and comprises
the variable for which we execute the performance test. Whereas a load time of
10 minutes might not be representative of a real execution time, we consider it
adequate for the micro-benchmark, as bottlenecks are already revealed within
this time period (cf. Sec. 4). Given the used load function and the workload
mix with only one workflow, the expected number of started workflows (S) is
computed as S =

P
u�1
j=1

Tr
u

rj + (T
l

� T

r

)ru where T

r

is the ramp-up period, T
l

is the load time, and r is the user requests/sec. The actual number can be less
or equal than the expected one, since it depends on the resource availability of
the servers where the instance producers are deployed, and the response time
of the WfMS. We have also set a connection time-out period T

o

of 20 seconds.
According to our experiments it is an adequate time to indicate that the WfMS
cannot handle the issued load. At the end of the run we are collecting the data,
and analyze them to compute the relevant performance metrics. For all the data
that are collected for the statistical analysis we have removed the first one minute
(2 ⇤ T

r

). This way we make sure that the analyzed results correspond to a stable
state of the WfMS.

4 Evaluation

4.1 Results

For each workflow pattern and each WfMS, we show the duration (milliseconds,
Fig. 2(a)), the CPU utilization (%, Fig. 2(b)), and the mean amount of RAM that
was allocated by the engine (MB, Fig. 3(a)). Table 1 shows the statistics [14] of
the duration computed for each workflow pattern and for every WfMS. The data
provided in Table 1 correspond to the means of measurements obtained under
the maximum load each WfMS could sustain, shown in terms of the number of
concurrent instance producers. In some cases the WfMS could not handle the
maximum load (1, 500 concurrent instance producers), and we had to reduce the
number of concurrent instance producers. These cases and the resulting data
are discussed in detail in the following subsections. For every experiment, the
total number of completed workflow instance requests from all WfMSs is listed
in Table 1 in column #Workflow(wi). We also include the total duration of
each experiment (in seconds) and the average throughput in terms of workflow
instances per second.

Similar statistics have been respectively calculated for CPU and RAM usage
but they are omitted for space reasons, and they are provided with the supple-
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Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) Usage
per workflow pattern

mentary material. The behaviour of all the WfMSs is discussed thoroughly in
Sec. 4.3.

4.2 Results Analysis

Sequence Flow Pattern [SEQ] The [SEQ] workflow pattern lasted on
average 0.39 ms for WfMS A, 6.39 ms for WfMS B and 0.74 ms for Camunda.
The short duration of this workflow pattern justifies the low mean CPU usage
which is 43.21% for WfMS A, 5.83% for WfMS B and 36.75% for Camunda.
WfMS B also has a very low average throughput of 63.31 wi/s while for the other
two WfMS the average throughput is similar. Concerning the memory utilization
under the maximum load WfMS A needed in average 12, 074, WfMS B 2, 936 and
Camunda 807.81 MB of RAM respectively. As observed from the Table 1 [SEQ]
is the workflow pattern with the highest throughput for all the WfMS under test.

Exclusive Choice & Simple Merge Patterns [EXC] Before proceeding
to the results analysis of the [EXC], we should consider that the first script task
of the workflow pattern generates a random integer, which is given as an input
to the very simple evaluation condition of the exclusive choice gateway. This was
expected to have some impact on the performance. However, Fig. 2(a) shows
that the duration times are not notably a↵ected as the values are close to those
of [SEQ]. More particularly, we have a mean of 0.48 ms for WfMS A, 9.30 ms for
WfMS B and 0.85 ms for Camunda. Concerning the CPU and RAM utilization,
we see a slight increase with respect to the [SEQ]. WfMS A uses an average of
57.42% CPU and 12, 215 MB RAM for executing 775, 455 workflow instances
in 540 sec, WfMS B takes approximately the same amount of time (562 sec) to
execute 27, 805 workflow instances. For this, it utilizes a mean of 5.73% CPU and
2, 976.37 MB of RAM, and Camunda 43.21% of CPU and 824.96 MB of RAM
for executing 765, 274 workflow instances in 540 sec.
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Explicit Termination Pattern [EXT] As discussed in Sec. 2 the [EXT]
executes concurrently an empty script and a script that implements a five seconds
wait. According to the BPMN 2.0 execution semantics, the branch of the [EXT]
that finishes first terminates the rest of the workflow’s running branches. We
have therefore designed the model considering that the fastest branch (empty
script) will complete first, and stop the slow script on the other branch when
the terminate end event following the empty script is activated. This was the
case for WfMS A and Camunda, which executed the workflow patterns in an
average of 14.11 ms and 0.4 ms respectively. The resource utilization of these two
WfMSs also increases in this workflow pattern, i.e., we have 60.20% mean CPU
usage and 12, 025 MB mean RAM usage for WfMS A and 33.34% mean CPU
usage and 794.92 MB mean RAM usage for Camunda. We can already see an
interesting di↵erence on the performance of the two WfMS as [EXT] constitutes
the slowest workflow pattern for WfMS A and the fastest for Camunda.

As seen in Fig. 2(a), WfMS B has very high duration results for this workflow
pattern. We have investigated this matter in more detail and we have observed
that over the executions WfMS B chooses the sequential execution of each path
with an average percentage of 52.23% for following the waiting script first and
47.77% for following first the empty script. Since the waiting script takes five
seconds to complete, every time it is chosen for execution it adds a five seconds
overhead, and thus the average duration time is so high. This alternate execution
of the two branches also explains the rest of the statistics. For example, we
observe a very high standard deviation of 2500.44 that indicates that there is
a very large spread of the values around the mean duration. Concerning the
resource utilization we can observe a very low average usage of CPU at 0.24%
and a mean RAM usage similar to the rest of the workflow patterns at 2, 747.34
MB. In Sec. 4.3 we attempt to give an explanation of this behavior for WfMS B.



Table 1. Workflow Instance Duration and Experiment Execution Statistics

Workflow Instance Execution Duration Statistics (ms) Experiment Execution Statistics
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B. 6.39± 0.43 6 4 82 1.21 6 6 7 1,500 35,516 561 63.31
C. 0.74± 0.01 1 0 682 2.29 0 1 1 1,500 786,664 540 1,456.79

E
X
C

A. 0.48± 0.01 0 0 485 2.07 0 0 1 1,500 775,455 540 1,436.03
B. 9.30± 0.05 9 6 131 2.11 9 9 10 1,500 27,805 567 49.04
C. 0.85± 0.01 1 0 627 2.51 0 1 1 1,500 765,274 540 1,417.17

E
X
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A. 14.10± 0.06 10 5 858 13.45 10 11 14 1,500 770,229 540 1,426.35
B. 2, 622.00± 237.68 11 8 5,047 2,500.44 13 5,012 5,016 1,500 1,703 4,498 0.38
C. 0.40± 0.01 0 0 74 1.03 0 0 1 1,500 784,614 539 1,455.68
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A. 13.29± 0.06 8 4 456 11.99 9 10 13 1,500 772,013 540 1,429.65
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B. 540.02± 122.3 11 6 5,195 1,525.27 10 12 38 1,500 2,392 1,343 1.78
C. 1.22± 0.02 0 0 434 4.21 0 1 1 1,500 575,210 542 1,061.27

WfMS A: A., WfMS B: B., Camunda: C.

Parallel Split & Synchronization Patterns [PAR] The [PAR] executes
two empty scripts concurrently. For WfMS A and WfMS B we observe an increase
in the duration times to 13.30 ms for WfMS A and 10.07 ms for WfMS B. Camunda
handles parallelism very fast, with a mean duration of 0.71 ms. Although WfMS B
seems faster by looking the duration results, we should take into consideration
that it has a total execution of 27, 718 workflow instances in 567 sec while WfMS A
executed 772, 013 workflow instances in 540 sec. Moreover, it is noteworthy that
WfMS A has a standard deviation of 11.99 which indicates that there were
executions for which the parallelism introduced more overhead in duration than
the average value. WfMS B has a 5.64% mean CPU and 2, 935.81 MB mean RAM
usage and Camunda has a 41.67% mean CPU and 828.37 MB mean RAM usage.
For both WfMSs these values are in the same range as the values resulted for the
execution of the other workflow patterns. WfMS A utilizes in average 66.10% of
CPU and 12, 201.16 MB of RAM. For WfMS A the values of utilized resources
are relatively higher than these obtained from the other workflow patterns.

Arbitrary Cycle Pattern [CYC] The performance of the [CYC] workflow
pattern cannot be directly compared to the other workflow patterns, because it
contains a higher number of language elements and demonstrates a more complex
structure. The [CYC] is also expected to have some extra overhead because of the
number generation and the script that increases the value of the variable. Finally,
the duration of this workflow pattern is dependent on the generated number, as
in the one case it executes 10 cycles while in the other it will execute 5 cycles.



During the execution of [CYC], Camunda showed connection timeout errors for
a load greater than 600 instance producers. For this reason, we had to reduce
the load to 600 instance producers for testing the other two WfMS. The load
for the results shown in Figures 2(a), 2(b) and 3(a) for this workflow pattern is
thus 600 instance producers. Table 1 shows the results for the maximum load
each WfMS could sustain: 800 instance producers for WfMS A, 1500 instance
producers for WfMS B and 600 for Camunda,. As expected, the mean [CYC]
execution duration is higher than the other workflow patterns. WfMS A has a
mean duration of 6.23 ms and Camunda a marginally bigger mean duration of
3.06 ms for this number of instance producers. WfMS B has a mean duration of
39.36 ms for approximately 600 instance producers.

Concerning the resource utilization, WfMS B and Camunda remain stable to
the same range of mean CPU usage (4.67% for WfMS B and 41.67% for Camunda)
as with the other workflow patterns. WfMS B remains on the same range of
mean RAM usage (2, 851.9 MB), while we observe an increase for Camunda to
an average of 933.31 MB. Concerning WfMS A’s resource utilization, we observe
a tendency to increase in comparison with the rest of the workflow patterns.
For approximately 600 instance producers, WfMS A uses in average 70.09% of
CPU and 12, 201.16 MB RAM. We consider it also interesting to report how
the results evolved for WfMS A and WfMS B when we increased the load to
the maximum (1500 and 800 instance producers respectively). Then, we observe
WfMS A doubling the mean duration time from 2.92 ms to 6.23 ms. The CPU is
also more stressed reaching 83.93% while the mean memory usage is only slightly
increased to 12, 429.67 MB. WfMS B remains in the same range of the previous
values with scarcely any increase to its performance. It uses in average 4.59%
of CPU and 2, 897.72 MB of RAM. This is because its response time increases
while adding instance producers.

Mix [MIX] By a quick overview of the [MIX] statistics, one could conclude
that they express the mean duration times of the individual workflow patterns
shown in Fig. 3(b). The throughput of the mix, is also a bit smaller for all the
WfMSs, although WfMS A keeps it on the same range as the previous values at
1, 402.33 wi/s. In Fig. 3(b) we can observe the separate duration times of the
workflow patterns for the case that they are executed in the uniformly distributed
mix. As seen in Fig. 3(b), all workflow patterns have a slight increase in their
duration times with respect to the execution as a single workflow pattern.

4.3 Discussion

As reported in Sec. 4.2, the BPMN version of WfMS B presents some peculiarity
in its behaviour. This was also noticed by Bianculli et al. [2] on their performance
measurements on the WS-BPEL version of the WfMS B. According to the
WfMS B documentation the REST API calls to the execution server will block
until the process instance has completed its execution. We observed the e↵ects of
this synchronous API in our experiments. All instance producers send requests
to the WfMS using the REST API with a think time of 1 sec. The instance
producers need to wait for the completion of their previous request before sending



a new one, but in the case of WfMS B the clients that are waiting for the entire
execution of the workflow instance to finish introduce a high overhead. This
overhead causes a delay that burdens the WfMS’s performance. In order to
investigate this further we have executed a scalability test to analyze the WfMS
behavior under di↵erent load intensity levels. The goal of this experiment was to
examine, whether by increasing significantly the number of instance producers
we could achieve a number of executed workflow instances that can be more
comparable to those of WfMS A and Camunda. We executed the experiment
for 500, 1000, 1500, and 2000 instance producers and observed a mean response
time of 7.15, 15.19, 22.58 and 30.89 seconds respectively, while the throughput
remained stable to an average of 62.23 workflow instances per second. These data
basically show that i) it is pointless to increase the number of instance producers
and target to the execution of more workflow instances; and that ii) the fact that
WfMS B is the only WfMS of the three under test using a synchronous REST
API does not impact the comparability of the measurement.

Another issue discussed concerning WfMS B was the inconsistent execution
behaviour of the [EXT]. Although the expected execution of [EXT] is that when
the path with the empty script ends the execution of the path with the 5 sec script
will also be terminated, we have observed many executions with the opposite
behavior. The path with the wait script was executing “first” and then, after 5
sec, followed the execution of the empty script. In this case, the end event that
corresponded to the empty task was never executed. This behavior of WfMS B
was also explained in their documentation. WfMS B basically chooses to dedicate
a single thread to the parallel execution of scripts, leading to a non-deterministic
serialization of the parallel paths. Indeed data showed that in about 50% of the
cases, the fast path is chosen to be executed first (cf., Sec. 2). When the branch
with the 5 sec waiting script is chosen then as expected the execution of the
WfMS needs to wait 5 sec until this branch is completed. This explains the very
high duration of the [EXT], as half of the executions have the 5 sec duration.

At this point we can draw some conclusions. Regarding the behavior of
WfMS B on the duration of the workflow execution we observe much higher
values for all the workflow patterns. The CPU and memory utilization of WfMS B
is always on much lower limits when compared to the other two WfMSs because
of the lower throughput. However, this is reasonable since every workflow instance
is executed sequentially and the actual executed load is lower compared to the
other two WfMSs, because of the higher response time. WfMS A and Camunda
share many architectural similarities because Camunda was originally a fork of
WfMS A. Still their behaviour is not identical and leads to some interesting
points. Camunda kept the duration values low for all the workflow patterns, but
for [SEQ] and [EXC] WfMS A executed slightly better. However, we note large
di↵erences in the duration values for [EXT], [PAR], and [MIX], that indicate an
impact of parallelism on the performance of the WfMS A, and increased resource
utilization. The parallelism does not seem to have much impact on Camunda,
as it remained relatively stable in all tests. Concerning the resource utilization
in general we observe WfMS B and Camunda having a more stable behaviour,



while WfMS A shows a direct increase when it is more stressed. In general, we
may conclude that Camunda performed better and more stable for all metrics
when compared with WfMS A and WfMS B.

Finally, concerning our hypotheses (cf., Sec. 2), [SEQ] resulted in the workflow
pattern with the lowest and most stable performance for all WfMSs [HYP1].
Also it was the workflow pattern with highest throughput for all tested WfMSs.
Concerning the [EXC], our hypothesis was a�rmed (cf., [HYP2]) as there is
a slight impact on the performance, which we connect with the evaluation of
the condition. The [HYP3] and [HYP4] that the [PAR] and [EXT] will have
similar impacts on performance holds basically for WfMS A and Camunda. Our
[HYP4] and [HYP5] for parallelism and complex structures having an impact on
the performance seems to hold for WfMS A, while for Camunda no conclusions
can be drawn with respect to this point. These results indicate that sequential
workflows (i.e., [SEQ]) may help towards discovering the maximum throughput
of the WfMSs. Parallelism (i.e., [PAR][EXT]) may a↵ect the WfMSs in terms of
throughput and resource utilization, while more complex structures (i.e., [CYC])
are better candidates for stressing the WfMSs in terms of resource utilization.
These conclusions should be considered when designing the workload for more
complex, realistic cases and macro-benchmarks.

4.4 Threats to Validity

A threat to external validity is that we evaluate three WfMSs, which is the
minimum number of WfMS for drawing initial conclusions. For generalizing our
conclusions more WfMS are needed, and for this we are designing the BenchFlow
environment to allow the easy addition of more WfMSs. Moreover, our simple
workload models threaten the construct validity. Although the micro-benchmark
does not correspond to real-life situations, we consider it fundamental for the
purposes of our work. Using this knowledge as a basis, we plan to test more
complex, realistic structures such as nested parallelism and conditions, as well as
combinations of them in diverse probabilistic workload mixes [17].

5 Related Work

Röck et al. [16] conduct a systematic review on approaches that test the perfor-
mance of WS-BPEL WfMSs, and stress the need for improvement on WfMSs
baseline tests. Micro-benchmarks target to test the performance of atomic op-
erations and assists performance engineers towards a deep comprehension of
the evaluated system, in order to assure correct and reliable results. Especially
in the case of modern, complex middleware systems, micro-benchmarks are
usually preferred for satisfying this goal [20]. For example Mendes et al. [12]
apply several micro-benchmarks on event processing systems to answer funda-
mental questions on their performance concerning scalability and bottlenecks.
Another micro-benchmark is introduced by Angles et al. [1] based on social
networks, and define the best candidates for macro-benchmarks. Another case of



micro-benchmarking is proposed by Waller and Hasselbring [20] for measuring
the overhead of application-level monitoring. The proposed micro-benchmark
identifies three causes of monitoring overhead, and sets the basis for a reliable
macro-benchmark. Regarding WfMSs Bianculli et al. [2] ran a micro-benchmark
for WS-BPEL. In this work, the goal is to rank the WfMS with respect to
their performance. To the extent of our knowledge we propose the first micro-
benchmark for BPMN 2.0 WfMS, with respect to the language characteristics
and we are confident that it is a strong contribution for more reliable, complex
macro-benchmarks in the field of WfMSs.

6 Conclusion and Future Work

In this work we have presented a micro-benchmark for BPMN 2.0 WfMSs. To
the extent of our knowledge this is the first attempt to investigate the impact
of BPMN 2.0 language constructs on the WfMSs performance. We ran a set of
experiments on a reliable benchmarking environment and among many important
observations our results showed important bottlenecks due to architectural design
decisions for WfMS B and that resource utilization can be a potential issue for
WfMS C. We also discovered load bottlenecks for Camunda during the execution
of the arbitrary cycle pattern. Consequently, despite the simplicity of the micro-
benchmark we argue that it is a potentially suitable choice for benchmarking
fundamental behavior or complex real-world WfMS.

Regarding individual workflow patterns we observed that the sequential work-
flow pattern revealed the maximum throughput for all of the WfMSs. Parallelism
(i. e., explicit termination and parallel pattern) a↵ected two of the three WfMSs
in terms of throughput and resource utilization. More complex structures, such
as the arbitrary cycle, also seem impact the resource utilization, thus they can
be better candidates to stress the WfMS. Finally, the mix execution helped us
conclude that there are no adverse performance e↵ects when executing di↵erent
workflow patterns concurrently. While there are no side-e↵ects when executing
di↵erent types of workflows concurrently, we did observe a slight increase on
individual performance metrics when compared to the homogeneous experiments
with individual patterns. The above results provide the first insights on which con-
structs constitute meaningful candidates for building more complex benchmarks.
For example, a test aiming to measure the throughput or resource utilization of
the WfMS should preferably choose complex, parallel structures.

We are currently working towards a public release of the BenchFlow environ-
ment in the near future. In future work we plan to exploit the conclusions of this
work to execute macro-benchmarks on BPMN 2.0 WfMSs with more complex
and realistic workflows that will also contain events and web service invocations.
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